Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Bioprocess Biosyst Eng ; 47(1): 39-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962643

RESUMO

Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads. The immobilization yield, efficiency, and activation energy were found to be 47.8%, 71.5%, and 15.78 J/mol, respectively. The bound enzyme displayed a shift in pH optima from 5.5 to 4.5, which is more beneficial to increase digestibility in comparison with the free enzyme. Immobilized phytase retained 42.60% of its activity after 1.0 h incubation at 80 °C, whereas free enzyme retained only 4.20% of its activity. Thermodynami increase in half-lives, D-values, enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized phytase could be reused for five consecutive cycles retaining 51% of its initial activity with sodium phytate. The immobilized phytase was also found effective to hydrolyze the soybean meal, thus increasing the digestibility of poultry feed. The hydrolyzing reaction of soybean meal was carried out for six consecutive cycles and immobilized phytase retained nearly 50% of activity till the fifth cycle. The amount of phosphorus released after treatment with immobilized phytase was far higher than that from free phytase. Immobilization on this support is significant, as this support can sustain high mechanical resistance at high pH and temperature. This considerable stability and reusability of the bound enzyme may be advantageous for its industrial application.


Assuntos
6-Fitase , Aspergillus oryzae , 6-Fitase/química , Aspergillus oryzae/metabolismo , Células Imobilizadas/metabolismo , Farinha , Fosfatos , Ácido Fítico/metabolismo
2.
Prep Biochem Biotechnol ; : 1-11, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38152875

RESUMO

The study aims to statistically optimize the phytase production by Penicillium oxalicum PBG30 in solid-state fermentation using wheat bran as substrate. Variables viz. pH, incubation days, MgSO4, and Tween-80 were the significant parameters identified through the Plackett-Burman design (PBD) that majorly influenced the phytase production. Further, central composite design (CCD) method of response surface methodology (RSM) defined the optimum values for these factors i.e., pH 7.0, 5 days of incubation, 0.75% of MgSO4, and 3.5% of Tween-80 that leads to maximum phytase production of 475.42 U/g DMR. Phytase production was also sustainable in flasks and trays of different sizes with phytase levels ranging from 394.95 to 475.42 U/g DMR. Enhancement in phytase production is 5.6-fold as compared to unoptimized conditions. The in-vitro dephytinization of feed showed an amelioration in the nutritive value by releasing inorganic phosphate and other nutrients in a time-dependent manner. The highest amount of inorganic phosphate (33.986 mg/g feed), reducing sugar (134.4 mg/g feed), and soluble protein (115.52 mg/g feed) was achieved at 37 °C with 200 U of phytase in 0.5 g feed for 48 h. This study reports the economical and large-scale production of phytase with applicability in enhancing feed nutrition.

3.
World J Microbiol Biotechnol ; 40(1): 22, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008864

RESUMO

Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.


Assuntos
6-Fitase , Animais , 6-Fitase/química , 6-Fitase/metabolismo , Fermentação , Ácido Fítico/metabolismo , Fósforo , Minerais
4.
Int J Biol Macromol ; 253(Pt 4): 127017, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742902

RESUMO

Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.


Assuntos
Ferro , Nanopartículas Metálicas , Ferro/química , Nanopartículas Metálicas/química , Bactérias/metabolismo , Sistemas de Liberação de Medicamentos , Biotecnologia/métodos , Extratos Vegetais/química , Plantas/química , Química Verde/métodos
5.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36763800

RESUMO

Microbial phytases are potentially excellent candidates for eliminating anti-nutrient i.e. phytic acid, due to hydrolysis of phospho-monoester linkages present in the phytic acid. An average 2.29-fold increase in phytase production was obtained after statistical optimization in solid-state fermentation. Aspergillus oryzae SBS50 phytase was immobilized on a Ca-alginate matrix with an effectiveness of 53%. Immobilized-phytase retained > 50% activity after recycling for five cycles and also displayed more stability in the presence of organic solvents, metal ions, and detergents as compared to free enzyme. Values of Km and Vmax of immobilized phytase were recorded as 0.66 mM and 666.6 nmol/sec, respectively. Immobilized phytase efficiently hydrolyzed the phytate contents in wheat and pearl millet flours, exhibiting > 70% catalytic activity even after three cycles. Phytase supplementation resulted in the improved nutritional quality of these flours. Furthermore, the safety assessment of the treated and untreated samples reveals the absence of any aflatoxin in the phytase produced by the mould. The results revealed the improved stability of phytase after immobilization and as a safe and significant additive for application in the food industry.


Assuntos
6-Fitase , Aspergillus oryzae , Ácido Fítico , Hidrólise , Suplementos Nutricionais , Ração Animal
6.
Crit Rev Food Sci Nutr ; 63(22): 5465-5487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34965785

RESUMO

Phytases are the most widely used food and feed enzymes, which aid in nutritional improvement by reducing anti-nutritional factor. Despite the benefits, enzymes usage in the industry is restricted by several factors such as their short life-span and poor reusability, which result in high costs for large-scale utilization at commercial scale. Furthermore, under pelleting conditions such as high temperatures, pH, and other factors, the enzyme becomes inactive due to lesser stability. Immobilization of phytases has been suggested as a way to overcome these limitations with improved performance. Matrices used to immobilize phytases include inorganic (Hydroxypatite, zeolite, and silica), organic (Polyacrylamide, epoxy resins, alginate, chitosan, and starch agar), soluble matrix (Polyvinyl alcohol), and nanomaterials including nanoparticles, nanofibers, nanotubes. Several surface analysis methods, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR analysis, have been used to characterize immobilized phytase. Immobilized phytases have been used in a broad range of biotechnological applications such as animal feed, biodegradation of food phytates, preparations of myo-inositol phosphates, and sulfoxidation by vanadate-substituted peroxidase. This article provides information on different matrices used for phytase immobilization from the last two decades, including the process of immobilization and support material, surface analysis techniques, and multifarious biotechnological applications of the immobilized phytases.


Assuntos
6-Fitase , Animais , 6-Fitase/química , 6-Fitase/metabolismo , Biotecnologia , Ração Animal , Temperatura Alta , Fosfatos de Inositol
7.
Appl Microbiol Biotechnol ; 106(2): 505-521, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35015145

RESUMO

Probiotics have been considered as an economical and safe alternative for the treatment of a large number of chronic diseases and improvement of human health. They are known to modulate the host immunity and protect from several infectious and non-infectious diseases. The colonization, killing of pathogens and induction of host cells are few of the important probiotic attributes which affect several functions of the host. In addition, prebiotics and non-digestible food substances selectively promote the growth of probiotics and human health through nutrient enrichment, and modulation of gut microbiota and immune system. This review highlights the role of probiotics and prebiotics alone and in combination (synbiotics) in the modulation of immune system, treatment of infections, management of inflammatory bowel disease and cancer therapy. KEY POINTS: • Probiotics and their derivatives against several human diseases. • Prebiotics feed probiotics and induce several functions in the host. • Discovery of novel and biosafe products needs attention for human health.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Simbióticos , Humanos , Prebióticos
8.
Mini Rev Med Chem ; 22(5): 770-804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34521325

RESUMO

Pyrazoles, an important and well-known class of the azole family, have been found to show a large number of applications in various fields, especially medicinal chemistry. Pyrazole derivatives, particularly methyl-substituted pyrazoles, have been reported as potent medicinal scaffolds that exhibit a wide spectrum of biological activities. The present review is an attempt to highlight the detailed synthetic approaches for methyl-substituted pyrazoles along with an in-depth analysis of their respective medical significances till March 2021. It is hoped that literature sum-up in the form of present review article would certainly be a great tool in assisting medicinal chemists in generating new leads possessing pyrazole nucleus with high efficacy and less microbial resistance.


Assuntos
Química Farmacêutica , Pirazóis , Pirazóis/farmacologia , Pirazóis/uso terapêutico
9.
Prep Biochem Biotechnol ; 52(2): 197-209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34010094

RESUMO

Production of cellulolytic and xylanolytic enzymes by Sporotrichum thermophile was enhanced using response surface methodology in solid-state fermentation (SSF) using wheat straw and cotton oil cake. Cellulolytic and xylanolytic enzymes were partially purified by ammonium sulfate precipitation followed by ion exchange and gel filtration chromatographic techniques. Xylanase of S. thermophile is neutral xylanase displaying optimal activity at 60 °C with Km and Vmax values of 0.2 mg/mL and 238.05 µmole/min, respectively. All cellulases produced by the thermophilic mold showed optimal activity at pH 5.0 and 60 °C with Km values of 0.312 mg/mL, 0.113 mg/mL, and 0.285 mM for carboxymethyl cellulase (CMCase), filter paper cellulase (FPase), and ß-glucosidase, respectively and while Vmax values were 181.81, 138.88, and 66.67 µmole/min, respectively. The presence of various metal ions (Ca2+ and Co2+), chemical reagent (glutaraldehyde), and surfactants (Tween 80 and Triton X-100) significantly improved the activities of all enzymes. All the enzymes showed high storage stability under low temperature (-20 and 4 °C) conditions. Cellulolytic and xylanolytic enzymes resulted in enhanced liberation of reducing sugars (356.34 mg/g) by hydrolyzing both cellulosic and hemicellulosic fractions of ammonia-pretreated rice straw as compared to other pretreatment methods used in the study. Fermentation of enzymatic hydrolysate resulted in the formation of 28.88 and 27.18 g/L of bioethanol in separate hydrolysis and fermentation (SHF) process by Saccharomyces cerevisiae and Pichia stipitis, respectively. Therefore, cellulolytic and xylanolytic enzymes of S. thermophile exhibited ideal properties of biocatalysts useful in the saccharification of cellulosic and hemicellulosic fractions of rice straw for the production of bioethanol.


Assuntos
Celulose/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Etanol/metabolismo , Oryza/metabolismo , Sporothrix/enzimologia , Celulase/metabolismo , Fermentação , Hidrólise
10.
Biotechnol Adv ; 53: 107834, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509601

RESUMO

Haloarchaea are adapted to survive under extreme saline conditions by accumulating osmolytes and salts to counteract the high osmotic pressure in their habitats. As a consequence, their proteins have evolved to remain active, or even most active, at very high ionic strength. Halocins are proteinaceous antimicrobial substances that are ribosomally-synthesized by haloarchaea and they provide the producers an advantage in the competition for nutrients and ecological niches. These antimicrobials are stable at high temperature, elevated salt concentrations, and alkaline pH conditions. These properties have endowed them with great potential in diverse biotechnological applications, which involve extreme processing conditions (such as high salt concentrations, high pressure, or high temperatures). They kill target cells by inhibition of Na+/H+ antiporter in the membrane or modification/disruption of the cell membrane leading to cell lysis. In general, the taxonomy of haloarchaea and their typical phenotypic and genotypic characteristics are well studied; however, information regarding their halocins, especially aspects related to genetics, biosynthetic pathways, mechanism of action, and structure-function relationship is very limited. A few studies have demonstrated the potential applications of halocins in the preservation of salted food products and brine-cured hides in leather industries, protecting the myocardium from ischemia and reperfusion injury, as well as from life-threatening diseases such as cardiac arrest and cancers. In recent years, genome mining has been an essential tool to decipher the genetic basis of halocin biosynthesis. Nevertheless, this is likely the tip of the iceberg as genome analyses have revealed many putative halocins in databases waiting for further investigation. Identification and characterization of this source of halocins may lead to antimicrobials for future therapeutics and/or food preservation. Hence, the present review analyzes different aspects of halocins such as biosynthesis, mechanism of action against target cells, and potential biotechnological applications.


Assuntos
Anti-Infecciosos , Archaea , Antibacterianos , Anti-Infecciosos/farmacologia , Cloreto de Sódio
11.
Protein Pept Lett ; 28(10): 1083-1089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34303326

RESUMO

BACKGROUND: Phytic acid acts as anti-nutritional factor in food and feed ingredients for monogastric animals as they lack phytases. OBJECTIVE: Phytase production by Bacillus subtilis subsp. subtilis JJBS250 was studied in solid-state fermentation and its applicability in dephytinization of food. METHODS: Bacterial culture was grown in solid state fermentation using wheat bran and various culture conditions were optimized using 'One variable at a time' (OVAT) approach. Effects of different substrates (wheat bran, wheat straw, sugarcane bagasse), incubation time (24, 48, 72 and 96 h), incubation temperatures (25, 30, 35 and 40°C), pH (4.0, 5.0, 6.0, 7.0 and 8.0) and moisture content (1:1.5, 1:2.0, 1:2.5 and 1:3) were studied on phytase production. Bacterial phytase was used in dephytinization of food samples. RESULTS: Optimization of phytase production was studied in solid state fermentation (SSF) using 'One variable at a time' (OVAT) approach. Bacillus subtilis subsp. subtilis JJBS250 grew well in various agroresidues in SSF and secreted high enzyme titres using wheat bran at 30°C and pH 5.0 after incubation time of 48 h with substrate to moisture ratio of 1:3. Glucose and ammonium sulphate supplementation to wheat bran further enhanced phytase production in SSF. Optimization of phytase production resulted in 2.4-fold improvement in phytase production in solid state fermentation. The enzyme resulted in dephytinization of wheat and rice flours with concomitant release of inorganic phosphate, reducing sugar and soluble protein. CONCLUSION: Optimization resulted in 2.34-fold enhancement in phytase production by bacterial culture that showed dephytinization of food ingredients with concomitant release of nutritional components. Therefore, phytase of B. subtilis subsp. subtilis JJBS250 could find application in improving nutritional quality of food and feed of monogastric animals.


Assuntos
6-Fitase/biossíntese , Técnicas de Cultura de Células/métodos , Sulfato de Amônio/metabolismo , Ração Animal , Bacillus , Biotecnologia , Celulose/metabolismo , Fibras na Dieta/metabolismo , Fermentação , Glucose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Saccharum/metabolismo , Temperatura
12.
Bioprocess Biosyst Eng ; 44(7): 1539-1555, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33765291

RESUMO

Endoxylanase production from M. thermophila BJTLRMDU3 using rice straw was enhanced to 2.53-fold after optimization in solid state fermentation (SSF). Endoxylanase was purified to homogeneity employing ammonium sulfate precipitation followed by gel filtration chromatography and had a molecular mass of ~ 25 kDa estimated by SDS-PAGE. Optimal endoxylanase activity was recorded at pH 5.0 and 60 °C. Purified enzyme showed complete tolerance to n-hexane, but activity was slightly inhibited by other organic solvents. Among surfactants, Tweens (20, 60, and 80) and Triton X 100 slightly enhanced the enzyme activity. The Vmax and Km values for purified endoxylanase were 6.29 µmol/min/mg protein and 5.4 mg/ml, respectively. Endoxylanase released 79.08 and 42.95% higher reducing sugars and soluble proteins, respectively, which control after 48 h at 60 °C from poultry feed. Synergistic effect of endoxylanase (100 U/g) and phytase (15 U/g) on poultry feed released higher amount of reducing sugars (58.58 mg/feed), soluble proteins (42.48 mg/g feed), and inorganic phosphate (28.34 mg/feed) in contrast to control having 23.55, 16.98, and 10.46 mg/feed of reducing sugars, soluble proteins, and inorganic phosphate, respectively, at 60 °C supplemented with endoxylanase only.


Assuntos
Ração Animal , Endo-1,4-beta-Xilanases/química , Sordariales/metabolismo , 6-Fitase/química , Cromatografia em Gel , Fermentação , Concentração de Íons de Hidrogênio , Octoxinol/química , Compostos Orgânicos , Oryza , Solventes/química , Açúcares/química , Tensoativos/química , Temperatura , Água/química
13.
Int J Biol Macromol ; 169: 564-582, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385447

RESUMO

Sugarcane bagasse is a rich source of cellulose (32-45%), hemicellulose (20-32%) and lignin (17-32%), 1.0-9.0% ash and some extractives. Huge amount of the generation of sugarcane bagasse has been a great challenge to industries and environment at global level for many years. Though cellulosic and hemicellulosic fractions in bagasse makes it a potential raw substrate for the production of value-added products at large scale, the presence of lignin hampers its saccharification which further leads to low yields of the value-added products. Therefore, an appropriate pretreatment strategy is of utmost importance that effectively solubilizes the lignin that exposes cellulose and hemicellulose for enzymatic action. Pretreatment also reduces the biomass recalcitrance i.e., cellulose crystallinity, structural complexity of cell wall and lignification for its effective utilization in biorefinery. Sugarcane bagasse served as nutrient medium for the cultivation of diverse microorganisms for the production of industrially important metabolites including enzymes, reducing sugars, prebiotic, organic acids and biofuels. Sugarcane bagasse has been utilized in the generation of electricity, syngas and as biosorbant in the bioremediation of heavy metals. Furthermore, the ash generated from bagasse is an excellent source for the synthesis of high strength and light weight bricks and tiles. Present review describes the utility of sugarcane bagasse as sustainable and renewable lignocellulosic substrate for the production of industrially important multifarious value-added products.


Assuntos
Celulose Oxidada/análise , Polissacarídeos/análise , Saccharum/química , Ácidos/análise , Biocombustíveis , Biomassa , Parede Celular/química , Celulose/química , Celulose Oxidada/isolamento & purificação , Hidrólise , Lignina/química , Polissacarídeos/isolamento & purificação , Saccharum/metabolismo
14.
Prep Biochem Biotechnol ; 51(7): 697-704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33302792

RESUMO

Optimization of cellulase production by Bacillus subtilis subsp. subtilis JJBS300 resulted in maximum cellulase (CMCase 9.7 U/g substrate) using wheat bran and rice straw in 1:1 ratio at substrate to moisture ratio of 1:3 at 35 °C and pH 4.0 after 48 h. Partially purified cellulase of B. subtilis subsp. subtilis showed optimal activity at 50 °C and pH 5.0. Among the metal ions, Na+, Ca2+ and Fe2+ stimulated the cellulase activity. Glutaraldehyde and 1-butanol also enhanced the cellulase activity as compared to other solvents. Bacterial cellulase hydrolyzed ammonia-pretreated rice straw more efficiently as compared to sodium-carbonate pretreated and untreated biomass. Optimization of saccharification of untreated and pretreated (sodium carbonate and ammonia) rice straw by bacterial cellulase resulted in high liberation of reducing sugars with enzyme dose of 100 U/g substrate (221 mg/g substrate) at pH 5.0 (103 mg/g substrate) and 50 °C (142 mg/g substrate) after 6 h in ammonia-pretreated rice straw. Furthermore, liberation of reducing sugars increased with incubation time showing maximum reducing sugars (171 mg/g substrate) after 24 h in ammonia-pretreated rice straw. HPLC analysis of enzymatic hydrolysate of ammonia-pretreated rice straw verified the ability of bacterial cellulase in liberation of various monomeric and oligomeric sugars.


Assuntos
Amônia/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/biossíntese , Biocatálise , Celulase/biossíntese , Oryza/química , Proteínas de Bactérias/química , Carbonatos/química , Celulase/química
15.
Bioprocess Biosyst Eng ; 43(6): 1081-1091, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32065289

RESUMO

An investigation was carried out using sugarcane bagasse as the agricultural residue to study the optimization of xylanase production by solid-state fermentation. Maximum xylanase production (20.35 U/g substrate) was achieved by Bacillus substilis subsp. subtilis JJBS250 using 'one variable at a time approach' at pH 7.0, 40 °C after 48 h. After statistical optimization by response surface methodology (RSM) there was 4.82-fold improvement in xylanase production (98.16 U/g substrate). Further optimization of untreated and sodium carbonate pretreated sugarcane bagasse enzymatic hydrolysis was carried out using both bacterial (Bacillus substilis subsp. subtilis JJBS250) and fungal (Myceliophthora thermophila BJTLRMDU3) xylanases that showed high amount of reducing sugar liberation from untreated sugarcane bagasse (124.24 mg/g substrate) as compared to pretreated (76.23 mg/g substrate) biomass. Furthermore, biophysical characterization of untreated and sodium carbonate pretreated sugarcane bagasse using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), revealed the structural changes in the pretreated biomass.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/biossíntese , Celulose/metabolismo , Endo-1,4-beta-Xilanases/biossíntese , Saccharum , Sordariales/enzimologia
16.
Appl Biochem Biotechnol ; 191(2): 679-694, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31845197

RESUMO

Phytases are the special class of enzymes which have excellent application potential for enhancing the quality of food by decreasing its inherent anti-nutrient components. In current study, a protease-resistant, acidic phytase from Aspergillus aculeatus APF1 was partially purified by ammonium sulfate fractionation followed by chromatography techniques. The molecular weight of partially purified phytase was in range of 25-35 kDa. The purified APF1 phytase was biochemically characterized and found catalytically active at pH 3.0 and 50 °C. The Km and Vmax values of APF1 phytase for calcium phytate were 3.21 mM and 3.78 U/mg protein, respectively. Variable activity was observed with metal ions and among inhibitors, chaotropic agents and organic solvents; phenyl glyoxal, potassium iodide, and butanol inhibited enzyme activity, respectively, while the enzyme activity was not majorly influenced by EDTA, urea, ethanol, and hexane. APF1 phytase treatment was found effective in dephytinization of flour biofortified wheat genotypes. Maximum decrease in phytic acid content was noticed in genotype MB-16-1-4 (89.98%) followed by PRH3-30-3 (82.32%) and PRH3-43-1 (81.47%). Overall, the study revealed that phytase from Aspergillus aculeatus APF1 could be effectively used in food and feed processing industry for enhancing nutritional value of food.


Assuntos
6-Fitase/química , 6-Fitase/metabolismo , Aspergillus/enzimologia , Genótipo , Triticum/metabolismo , 6-Fitase/efeitos dos fármacos , Ração Animal , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Farinha , Manipulação de Alimentos , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Ácido Fítico , Temperatura
17.
Appl Microbiol Biotechnol ; 103(21-22): 8763-8784, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31641815

RESUMO

Microbial xylanases have gathered great attention due to their biotechnological potential at industrial scale for many processes. A variety of lignocellulosic materials, such as sugarcane bagasse, rice straw, rice bran, wheat straw, wheat bran, corn cob, and ragi bran, are used for xylanase production which also solved the great issue of solid waste management. Both solid-state and submerged fermentation have been used for xylanase production controlled by various physical and nutritional parameters. Majority of xylanases have optimum pH in the range of 4.0-9.0 with optimum temperature at 30-60 °C. For biochemical, molecular studies and also for successful application in industries, purification and characterization of xylanase have been carried out using various appropriate techniques. Cloning and genetic engineering are used for commercial-level production of xylanase, to meet specific economic viability and industrial needs. Microbial xylanases are used in various biotechnological applications like biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. This review describes production, characteristics, and biotechnological applications of microbial xylanases.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Endo-1,4-beta-Xilanases/metabolismo , Lignina/metabolismo , Biocombustíveis/microbiologia , Endo-1,4-beta-Xilanases/química , Fermentação/fisiologia , Engenharia Genética/métodos
18.
Phytother Res ; 33(9): 2163-2178, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31290201

RESUMO

Ageratum conyzoides L. (Asteraceae) is an invasive aromatic herb with immense therapeutic importance. The herb is distributed in tropical and subtropical regions. A. conyzoides has imparted numerous ethnomedicinal uses because it has been used to cure various ailments that include leprosy, skin disorders, sleeping sickness, rheumatism, headaches, dyspnea, toothache, pneumonia and many more. A number of phytoconstituents have been scrutinized such as alkaloids, flavonoids, terpenes, chromenes, and sterols from almost every part of this plant. These phytoconstituents have shown diverse pharmacological properties including antimicrobial, anti-inflammatory, analgesic, antioxidant, anticancer, antiprotozoal, antidiabetic, spasmolytic, allelopathy, and many more. The plant A. conyzoides has provided a platform for doing pharmaceutical and toxicological research in order to isolate some promising active compounds and authenticate their safety in clinical uses. A. conyzoides provides principal information for advanced studies in the field of pharmaceutical industries and agriculture. Present review article describes the cytogenetics, ethnobotany, phytochemistry, pharmacology, and toxicological aspects of A. conyzoides.


Assuntos
Ageratum/química , Etnofarmacologia/métodos , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Humanos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
19.
3 Biotech ; 9(6): 214, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31114738

RESUMO

The production of enzymes by solid-state fermentation is an interesting process and currently used worldwide as it can be carried out in solid matrix in absence of free water. In present study, Myceliophthora thermophila BJTLRMDU3 produced high titres of endoxylanase (890.55 U/g DR, dry residue) using 5 g rice straw at pH 7.0 and at 45 °C with 1:7 (w/v) solid-to-moisture ratio with inoculum rate of 12 × 106 spores/ml after 4 days in solid-state fermentation. High enzyme titre was produced after moistening the rice straw with solution containing ammonium sulphate (0.4%), K2HPO4 (1.0%), MgSO4·7H2O (0.3%), FeSO4·7H2O (0.03%) and CaCl2 (0.03%). Addition of sucrose (2% w/v) and ammonium nitrate (2% w/v) further enhanced the endoxylanase production. A high endoxylanase production was achieved at water activity (a W) of 0.95 (1639.80 U/g DR) that declined drastically below this value. Among different surfactants, Tween 20 (3% v/v) enhanced the secretion of endoxylanase (2047.91 U/g DR). Furthermore, on optimization of K2HPO4 concentration, it was found that 0.5% K2HPO4 improved (2191.28 U/g DR) endoxylanase production and overall 4.35-folds increase in production of endoxylanase was achieved after optimization of culture conditions. The enzyme has potential to liberate monomeric (xylose) as well as oligomeric (xylotiose, xylotetrose, and xylopantose) sugars from xylan. On saccharification of rice straw and corncob with endoxylanase, maximum yield of reducing sugars was 135.61 and 132.61 mg/g of substrate recorded after 48, and 36 h, respectively.

20.
Probiotics Antimicrob Proteins ; 11(2): 687-695, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30032477

RESUMO

Screening of bacteriocin-producing lactic acid bacteria (LAB) is an important aspect for the search of new/novel probiotic strains. Here, a vesicle-based colorimetric assay was compared with conventional inhibition-based antimicrobial assays using 54 isolates of LAB. All isolates demonstrated zone of growth inhibition ranging from 2.5 to 7.5 mm against indicator strain, Micrococcus luteus MTCC106 using point inoculation method. Cell-free supernatant of the isolates showed zone of growth inhibition varying from 14.5 to 25 mm using agar well diffusion assay. These isolates inhibited the growth of indicator strain by 89.56-98.65%. The antimicrobial activity present in cell-free supernatant of different isolates was found to be in the range of 10-160 AU ml- 1. The treatment of polydiacetylene (PDA) vesicles with cell-free supernatant of selected isolates led to blue-red color transition, and presence of protein band on tricine SDS-PAGE confirmed the presence of membrane-acting peptides, bacteriocins. The colorimetric responses (CR%) varied between 0 and 59%, and the assay was found to be more sensitive, faster, and reliable as compared to the other conventional indicator-based methods used. Therefore, the colorimetric assay may be specifically applied for screening of bacteriocin-producing LAB.


Assuntos
Bacteriocinas/biossíntese , Colorimetria/métodos , Lactobacillales/isolamento & purificação , Indicadores e Reagentes , Lactobacillales/crescimento & desenvolvimento , Probióticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...